
Krzysztof Korzela
RHCA, Senior Solution Architect

Red Hat OpenShift Service Mesh 
Czy to recepta na liczne wymagania stawiane aplikacjom? 



Why Service Mesh? 
“Distributed Systems are hard”



Why Service Mesh?

3

Developing Microservices
A Common Pattern

● A common pattern when developing microservices.

● In Development: 

○ New services are written.

○ They are tested locally - looks good!

○ The are tested in a staging cluster - looks good!

● LGTM, Ship it!

Service A Service 
B

Service CGateway

✓

✓

✓

✓

✓



Why Service Mesh?

4

Microservice in Production
A Common Pattern

Service A Service 
B

Service CGateway

X
?

??

?

?

?

?● In production, things become less predictable:

○ Sporadic delays and failures are seen.

○ Performance is not as expected.

○ Security holes may be discovered.

○ Services are scaled, but performance doesn’t improve.

○ Fixes are made, but upgrades cause further issues.

● Microservices are distributed systems and 
troubleshooting distributed systems is hard!



Why Service Mesh?

5

The Fallacies of Distributed Computing
Microservices are Distributed Systems

Service A Service 
B

Service CGateway

?
?

??

?

?

?

?● These challenges are a result of the fallacies of distributed 
computing:

○ The network is reliable.
○ Latency is zero.
○ Bandwidth is infinite.
○ The network is secure.
○ Topology doesn't change.
○ There is one administrator.
○ Transport cost is zero.
○ The network is homogeneous.



Why Service Mesh?

6

Why Service Mesh?
Solving Microservices Challenges with Code

● These challenges are often mitigated with:

○ Code to handle failures between services.

○ Logs, metrics and traces in source code.

○ 3rd party libraries for managing deployments, security 
and more.

● This results in: 
○ Different solutions in different services.
○ Boilerplate code.
○ New dependencies to keep up date.

Every ServiceEvery Service

Service

...and more boilerplate 
code.

Traffic Management Code

Failure Handling Code

Metrics & Tracing Code

Security Code

Container Platform



Why Service Mesh?

7

Why Service Mesh?
An Abstraction for Microservice Challenges

● Service Mesh solve distributed systems 
challenges at a common infrastructure 
layer.

● This reduces boilerplate code and 
copy/paste errors across services.

● Enforces common policies across all 
services.

● Removes the obligation to implement 
cross cutting concerns from developers.

Service

Container Platform 

Service Mesh

Service

...and more boilerplate 
code.

Traffic Management Code

Failure Handling Code

Metrics & Tracing Code

Security Code

Container Platform

Services
Without Service Mesh

Services
With Service Mesh



Why Service Mesh?

8

Is This a “Micro” Service?

8

Does it really make sense to push operational challenges to developers to deal with?

“Micro” Service

Routing Logic

Fault Tolerance

Authentication

Authorization

Metrics and Logging

Distributed Tracing

Business Logic

Microservice

Business Logic

Client Library



9



10



OpenShift Service Mesh

11

Connect, Secure, Control and Observe Services on OpenShift

● A software infrastructure layer between 
Kubernetes and your services for managing 
communications.

● Handles common “microservice” 
challenges, so that developers don’t have 
to:

○ Security

○ Monitoring & Observability

○ Application Resilience

○ Upgrades, Rollouts & A/B Testing

○ And more...

OPENSHIFT

OpenShift Service Mesh

Istio Jaeger

Red Hat Enterprise Linux CoreOS

Physical Virtual Private cloud Public cloud

Services

F

Kiali

OpenShift Service Mesh

Envoy Envoy Envoy

OpenShift Service Mesh



What is a Service Mesh? 
“Envoy Proxies and a Control Plane”



What is a Service Mesh ?

13

Connecting Services within the Mesh

● All service pods are given an Envoy proxy as a 
sidecar container. Together, these form the Data 
Plane.

● All communications occur through these proxies.

● This creates a mesh of communication that has full 
visibility and control of all traffic.

● The proxies - and thus the mesh, are configured 
and managed by a central Control Plane.

Service 
A Envoy

Proxy

Service B
Envoy
Proxy

Service C

Envoy
Proxy

Control Plane



What is a Service Mesh ?

14

Connecting Services Outside the Mesh

● External communication occurs via Gateway 
proxies, that are also part of the mesh.

● Ingress Gateways manage traffic entering the mesh.

○ An alternative to Kubernetes Ingress, with 
additional mesh features.

● Egress Gateways manage traffic exiting the mesh.

○ Can require all external services to be 
registered.

● On OpenShift, Service Mesh Ingress Gateways can 
be used in conjunction with an OpenShift route or 
on their own.

Envoy
Gateway(s)

Service 
A Envoy

Proxy

Service B
Envoy
Proxy

Envoy
Proxy

Control Plane



What is a Service Mesh ?

15



Service Mesh Use Cases
“Connect, secure, observe and control traffic”



Service Mesh Use Cases

17

Service Mesh Use Cases

● Securing Services

● Management

● Monitoring & Observing Services 

● Building Resilient Services

● Releasing Services 

Service Service

ServiceIngress & 
Egress

Control Plane

Service A 
V1

Service A 
V2

Envoy
Proxy

Envoy
Proxy

Envoy
Proxy

Envoy
Proxy



linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you


